9461번: 파도반 수열

문제 오른쪽 그림과 같이 삼각형이 나선 모양으로 놓여져 있다. 첫 삼각형은 정삼각형으로 변의 길이는 1이다. 그 다음에는 다음과 같은 과정으로 정삼각형을 계속 추가한다. 나선에서 가장 긴 �

www.acmicpc.net

 

<내 코드>

n = int(input())
memo = [0 for _ in range(101)]

for i in range(0, 4):
    memo[i] = 1
for j in range(4, 6):
    memo[j] = 2

for _ in range(n):
    m = int(input())
    for k in range(6, m+1):  # 6 ~ m-1
        memo[k] = memo[k-1] + memo[k-5]

    print(memo[m])

 

피보나치 수열과 비슷한 맥락으로 규칙을 찾아 점화식을 세우면 간단하게 풀 수 있었다.

인덱스 0번 ~ 4번까지는 1과 2로 넣어주고 그 다음부터는 점화식을 통해 값을 구해나가는 구조였다. 인덱스 값을 0번째 부터 설정해서 뒤에서 조금 헷갈린거 말고는 크게 어렵지 않았다.

반응형

 

 

2748번: 피보나치 수 2

문제 피보나치 수는 0과 1로 시작한다. 0번째 피보나치 수는 0이고, 1번째 피보나치 수는 1이다. 그 다음 2번째 부터는 바로 앞 두 피보나치 수의 합이 된다. 이를 식으로 써보면 Fn = Fn-1 + Fn-2 (n>=2)��

www.acmicpc.net

 

<내 코드>

n = int(input())
memo = [0 for i in range(n+1)]
memo[1] = 1
for i in range(2, n+1):
    memo[i] = memo[i-1]+memo[i-2]

print(memo[-1])

처음에 재귀호출을 통해 풀었을 때, 예상대로 시간초과가 났다. 

Bottom-up은 바닥에서 올라오는 것, 즉, 작은 문제부터 시작해서 작은 문제를 점점 쌓아 큰 문제를 푸는 것이다. 첫 번째 피보나치 수를 구하는 문제와 두 번째 피보나치 수를 구하는 문제를 풀면 세 번째 피보나치 수를 구하는 문제를 풀 수 있다. 두 번째 피보나치 수를 구하는 문제와 세 번째 피보나치 수를 구하는 문제를 풀면 네 번째 피보나치 수를 구하는 문제를 풀 수 있다....이걸 반복하면 n번째 피보나치 수를 구할 수 있다.

반응형

 

 

2805번: 나무 자르기

문제 상근이는 나무 M미터가 필요하다. 근처에 나무를 구입할 곳이 모두 망해버렸기 때문에, 정부에 벌목 허가를 요청했다. 정부는 상근이네 집 근처의 나무 한 줄에 대한 벌목 허가를 내주었고,

www.acmicpc.net

 

 

<내 코드>

 

def binarySearch(M, tree):
    start = 1
    end = max(tree)

    while start <= end:
        leng = 0
        mid = (start + end) // 2

        for i in tree:
            if i >= mid:
                leng += i - mid

        if leng >= M:
            start = mid + 1
        else:
            end = mid - 1

    return end


N, M = map(int, input().split())
tree = list(map(int, input().split()))

sortTree = sorted(tree)
print(binarySearch(M, sortTree))

이분 탐색 알고리즘을 이용해서 푸는 문제다. 알고리즘만 알고 있으면 생각보다 간단한 문제였다. 같은 코드로 채점 했는데 pypy3는 588ms가 걸리고 python3는 2984ms 가 걸리면서 다소 큰 차이가 있었다. 

반응형

 

 

1920번: 수 찾기

첫째 줄에 자연수 N(1≤N≤100,000)이 주어진다. 다음 줄에는 N개의 정수 A[1], A[2], …, A[N]이 주어진다. 다음 줄에는 M(1≤M≤100,000)이 주어진다. 다음 줄에는 M개의 수들이 주어지는데, 이 수들이 A안��

www.acmicpc.net

 

<내 코드>

n = int(input())
A_num = list(map(int, input().split()))
sorted_A = sorted(A_num)

m = int(input())
M_num = list(map(int, input().split()))


def binary_search(M, sorted_A):
    start = 0
    end = len(sorted_A)-1

    while start <= end:
        mid = (start + end) // 2

        if(m == sorted_A[mid]):
            return print(1)
        elif (m > sorted_A[mid]):
            start = mid + 1
        else:
            end = mid - 1
    return print(0)


for m in M_num:
    binary_search(m, sorted_A)

 

이분 탐색 알고리즘 문제다. 이분 탐색은 미리 정렬된 리스트에서 값을 찾아나가는 알고리즘이다. 정렬된 자료에서 중앙값을 찾은 다음 찾으려는 값과 비교한다. 중앙값이 더 크면 찾으려는 값이 오른쪽에 있는 것이기에 오른쪽으로 범위를 좁히고, 중앙값이 더 작다면 왼쪽으로 범위를 좁혀 찾아나간다. 비교하는 값이 존재한다면 1을 프린트하고, 없다면 0을 프린트한다.

반응형

 

 

11866번: 요세푸스 문제 0

첫째 줄에 N과 K가 빈 칸을 사이에 두고 순서대로 주어진다. (1 ≤ K ≤ N ≤ 1,000)

www.acmicpc.net

 

 

<내 코드>

n, k = map(int, input().split())
people = [i for i in range(1, n+1)]
key = 0
temp = k - 1
order = []
while people:
    key = (key+temp) % len(people)
    order.append(people.pop(key))

print('<'+', '.join(map(str, order))+'>')

 

순열 규칙을 찾으면 간단하게 해결되는 문제였다. 

반응형

 

 

1966번: 프린터 큐

문제 여러분도 알다시피 여러분의 프린터 기기는 여러분이 인쇄하고자 하는 문서를 인쇄 명령을 받은 ‘순서대로’, 즉 먼저 요청된 것을 먼저 인쇄한다. 여러 개의 문서가 쌓인다면 Queue 자료��

www.acmicpc.net

 

<내 코드>

case = int(input())
for _ in range(case):
	# n : 자료 개수 , m : 찾고자 하는 자료 위치
    n, m = map(int, input().split())
    imp = list(map(int, input().split()))
    temp = [0 for _ in range(n)] #리스트 표현식으로 0인 리스트 생성
    temp[m] = 1 # 찾고자 하는 m번째를 1로 표시
    cnt = 0

    while imp:
        if imp[0] == max(imp):
            cnt += 1
            if temp[0] == 1:
                print(cnt)
                break
            else:
                imp.pop(0)
                temp.pop(0)
        else:
            imp.append(imp[0])
            temp.append(temp[0])
            del(imp[0])
            del(temp[0])

 

- 중요도를 표시하는 imp 입력을 리스트로 만든다.

- imp 리스트와 비교하기 위한 temp 리스트를 만든다.

- imp[0]이 젤 큰 값인지 판단해, 아니라면 imp, temp 첫 요소를 뒤로 보내고 한 칸씩 땡긴다.

- imp[0]이 최댓값이면서 찾고자 하는 값이면 cnt 값을 출력하고 종료한다. 만약 찾고자 하는 값이 아니면 지우고 한 칸씩 땡긴다.

반응형

 

 

2164번: 카드2

N장의 카드가 있다. 각각의 카드는 차례로 1부터 N까지의 번호가 붙어 있으며, 1번 카드가 제일 위에, N번 카드가 제일 아래인 상태로 순서대로 카드가 놓여 있다. 이제 다음과 같은 동작을 카드가

www.acmicpc.net

 

<내 코드>

from collections import deque
n = int(input())
nums = deque()

for i in range(1, n+1):
    nums.append(i)


def que():
    cnt = 0
    while(len(nums) >= 1):
        cnt += 1
        if(len(nums) == 1):
            return nums[0]

        if(cnt % 2 == 1):
            nums.popleft()

        elif(cnt % 2 == 0):
            nums.append(nums.popleft())


print(que())

처음에 deque 사용하지 않고 pop() 2개를 사용했더니 역시나 시간 초과가 났다.. 

카운트를 이용해 홀수, 짝수 순서에 따라 카드 제거 & 카드 뒤로 이동을 구현했다.

반응형

 

 

18258번: 큐 2

첫째 줄에 주어지는 명령의 수 N (1 ≤ N ≤ 2,000,000)이 주어진다. 둘째 줄부터 N개의 줄에는 명령이 하나씩 주어진다. 주어지는 정수는 1보다 크거나 같고, 100,000보다 작거나 같다. 문제에 나와있지

www.acmicpc.net

 

<내 코드>

import sys
from collections import deque

n = int(sys.stdin.readline())
deque = deque()


def push(queque, x):
    deque.append(x)


def pop(deque):
    if(not deque):
        return -1
    else:
        return deque.popleft()


def size():
    return len(deque)


def empty():
    if(not deque):
        return 1
    else:
        return 0


def front():
    if(not deque):
        return -1
    else:
        return deque[0]


def back():
    if(not deque):
        return -1
    else:
        return deque[-1]


for i in range(n):
    oper = sys.stdin.readline().split()

    if (oper[0] == "push"):
        push(deque, oper[1])
    elif(oper[0] == "pop"):
        print(pop(deque))
    elif(oper[0] == "size"):
        print(size())
    elif(oper[0] == "empty"):
        print(empty())
    elif(oper[0] == "front"):
        print(front())
    elif(oper[0] == "back"):
        print(back())

 

이 문제는 시간 복잡도가 O(1)이 되어야 하는데, 일반적인 리스트의 pop() 함수를 사용하면 첫 번째 요소를 pop 할 때는 O(n)의 시간이 소요된다. 그래서 collections의 deque를 사용했다. pop 부분에서 popleft를 이용해 시간을 단축시킬 수 있다. deque는 스택과 큐를 합친 자료구조이다.

반응형

+ Recent posts