DFS(Depth-First Search)와 BFS(Breadth-First Search)는 그래프나 트리 탐색에서 사용하는 대표적인 탐색 알고리즘이다. 두 알고리즘 모두 특정 노드를 방문하고, 그 노드와 연결된 다른 노드들을 탐색하는 방식으로 동작한다. DFS는 깊이를 우선으로 탐색하고, BFS는 너비를 우선으로 탐색한다.

 

1. DFS (Depth-First Search, 깊이 우선 탐색)

DFS는 탐색할 때 가능한 한 깊게 들어가는 방식으로 탐색한다. 즉, 한 경로를 따라 끝까지 가고, 더 이상 갈 곳이 없으면 다시 돌아와 다른 경로를 탐색한다. 이 방식은 재귀스택을 사용해 구현할 수 있다.

 

DFS 예시: 그래프 탐색

function dfs(graph, start, visited = new Set()) {
    // 현재 노드 방문 처리
    visited.add(start);
    console.log(start);

    // 현재 노드와 연결된 노드들을 재귀적으로 방문
    for (let neighbor of graph[start]) {
        if (!visited.has(neighbor)) {
            dfs(graph, neighbor, visited);
        }
    }
}
// 그래프 표현 (인접 리스트)
const graph = {
    1: [2, 3],
    2: [4],
    3: [5],
    4: [],
    5: []
}

dfs(graph, 1);  // 출력: 1 2 4 3 5

 

DFS의 시간 복잡도

  • 시간 복잡도: O(V + E) (V는 노드 수, E는 간선 수)
  • 그래프의 모든 노드를 방문하고 모든 간선을 처리해야 하기 때문에, 위와 같은 복잡도를 가진다.

 

2. BFS (Breadth-First Search, 너비 우선 탐색)

BFS는 탐색할 때 가까운 노드부터 차례대로 방문한다. 즉, 특정 노드에서 연결된 모든 노드를 먼저 탐색한 후, 그 다음 깊이의 노드들을 탐색한다. 이 방식은 큐(Queue) 자료 구조를 사용해 구현한다.

 

BFS 예시: 최단 경로 탐색

function bfs(graph, start) {
    const queue = [start]; // 탐색할 노드를 저장할 큐
    const visited = new Set(); // 방문한 노드를 저장할 집합
    visited.add(start);

    while (queue.length > 0) {
        const node = queue.shift(); // 탐색할 노드를 큐에서 꺼냄
        console.log(node);

        for (let neighbor of graph[node]) {
            if (!visited.has(neighbor)) {
                visited.add(neighbor);
                queue.push(neighbor);
            }
        }
    }
}

// 그래프 표현 (인접 리스트)
const graph = {
    1: [2, 3],
    2: [4],
    3: [5],
    4: [],
    5: []
};

bfs(graph, 1);  // 출력: 1 2 3 4 5

 

BFS의 시간 복잡도

  • 시간 복잡도: O(V + E) (V는 노드 수, E는 간선 수)
  • 모든 노드와 모든 간선을 한 번씩 방문하기 때문에 DFS와 마찬가지로 같은 복잡도를 가진다.

 

DFS와 BFS의 차이

  • 탐색 방식: DFS는 깊이 우선으로 탐색하며, BFS는 너비 우선으로 탐색한다.
  • 구현 방식: DFS는 재귀나 스택을 사용하고, BFS는 큐를 사용해 구현한다.
  • 사용 사례:
    • DFS는 경로 탐색(예: 미로 찾기)나 백트래킹이 필요한 문제에 적합하다.
    • BFS는 그래프에서 최단 경로를 찾는 문제에 적합하다.

 

예시 문제

 

1. 미로 찾기

문제: N x M 크기의 미로가 주어질 때, 출발점에서 도착점까지 최단 경로를 찾으세요. 벽은 통과할 수 없으며, 상하좌우로만 이동할 수 있습니다.

 

// BFS
function shortestPath(maze, start, end) {
    const directions = [[0, 1], [1, 0], [0, -1], [1, 0]];
    const queue = [[start, 0]]; // [현재위치, 이동거리]
    const visited = new Set();
    visited.add(start.toString());

    while (queue.length > 0) {
        const [[x, y], distance] = queue.shift();

        if (x === end[0] && y === end[1]) return distance;

        for (let [dx, dy] of directions) {
            const newX = x + dx;
            const newY = y + dy;

            if (newX >= 0 && newY >= 0 &&
                newX < maze.length && newY < maze[0].length &&
                maze[newX][newY] === 0 && !visited.has([newX, newY].toString())
            ) {
                visited.add([newX, newY].toString());
                queue.push([[newX, newY], distance + 1]);
            }
        }
    }

    return -1; // 도착할 수 없는 경우
}

const maze = [
    [0, 1, 0, 0, 0],
    [0, 1, 0, 1, 0],
    [0, 0, 0, 1, 0],
    [0, 1, 1, 1, 0],
    [0, 0, 0, 0, 0]
];

console.log(shortestPath(maze, [0, 0], [4, 4]));  // 출력: 8 (최단 경로 거리)

 


2. 섬 개수 세기

문제: 2차원 배열에서 육지를 1, 바다를 0으로 나타내는 섬의 지도에서, 섬(연결된 1의 집합)의 개수를 구하세요.

 

// DFS
function numIslands(grid) {
    let count = 0;

    function dfs(grid, x, y) {
        if (x < 0 || y < 0 || x >= grid.length || y >= grid[0].length || grid[x][y] === '0') {
            return;
        }

        grid[x][y] = '0'; // 방문한 곳은 0 처리
        dfs(grid, x + 1, y);
        dfs(grid, x - 1, y);
        dfs(grid, x, y + 1);
        dfs(grid, x, y - 1);
    }

    for (let i = 0; i < grid.length; i++) {
        for (let j = 0; j < grid[0].length; j++) {
            if (grid[i][j] === '1') {
                count++;
                dfs(grid, i, j);
            }
        }
    }

    return count;
}

const grid = [
    ['1', '1', '0', '0', '0'],
    ['1', '1', '0', '0', '0'],
    ['0', '0', '1', '0', '0'],
    ['0', '0', '0', '1', '1']
];

console.log(numIslands(grid));  // 출력: 3 (3개의 섬)

 

반응형

patch-package

서드파티 라이브러리를 커스텀한 상태가 배포상태에서도 지속되도록 관리해주는 패키지.

즉, node_modules에 수정한 사항이 git으로 관리되고 어떠한 실행 환경에서도 적용되도록 한다.

patch-package를 사용할 시 매번 버전이 달라질 때마다 patch 파일의 버전을 인스톨 되어 있는 버전과 맞춰줘야 하는 단점이 있다.

 

1. 설치

npm install —save-dev patch-package

 

2. 설정

// package.json

"scripts": {
	"postinstall": "patch-package", // 해당 스크립트 추가
},

 

 

3. 변경하고자 하는 패키지 코드 수정

패키지 코드를 원하는대로 수정한다.

 

 

4. patch 적용

npx patch-package [변경한 패키지 이름]

 

5. “patches”라는 폴더가 생기고, 폴더 안에 변경한 패치 내용이 저장되어 있음을 확인

 

 

6. node_moduels 을 지웠다가 npm install 해보면 자동으로 패치내용들이 적용되어 있음

 

주의) 수정한 패키지의 patches 버전과 package.json의 패키지 버전이 다르면 에러를 유발하니 버전 체크하는 것이 중요!

반응형

 

 

프로그래머스

코드 중심의 개발자 채용. 스택 기반의 포지션 매칭. 프로그래머스의 개발자 맞춤형 프로필을 등록하고, 나와 기술 궁합이 잘 맞는 기업들을 매칭 받으세요.

programmers.co.kr

<내 풀이>

function solution(heights) {
    var answer = []

    for(var i = heights.length - 1; i > 0; i--){
        for(var j = i - 1; j>=0; j--){
            if(heights[i] < heights[j]){
                answer.unshift(j+1);
                break;
            }else if(j === 0){
                answer.unshift(0);
            }
        }
        
    }
    answer.unshift(0); 
    return answer;
}

 

<다른 풀이>

function solution(heights) {
    return heights.map((v, i) => {
        while (i) {
            i--;
            if (heights[i] > v) {
                return i + 1;
            }
        }
        return 0;
    });
}

 

<공부>

 

map() : 인자로 주어진 함수(여기선 화살표 함수)에 모든 각각의 요소를 적용한 값으로 이루어진 배열을 반환합니다

Arrow function(화살표 함수) : 화살표 함수는 항상 익명이다. 메서드 함수가 아닌 곳에서 적합하며, 그래서 생성자로 사용을 못 한다.

var add = function (a,b) {
	return a+b;
};

// {} 블럭이 없는 경우(한 줄로 표현이 되는 경우)
var add = (a,b) => a+b;

// {} 블럭이 필요한 경우 --> 반드시 return 키워드를 사용해야함
var something = (a,b) => {
	//do something more
    return a * b;
};
반응형

+ Recent posts